Built using Zelig version 5.1.4.90000
Generalized Estimating Equation for Gamma Regression with gamma.gee
.
The GEE gamma is similar to standard gamma regression (appropriate when you have an uncensored, positive-valued, continuous dependent variable such as the time until a parliamentary cabinet falls). Unlike in gamma regression, GEE gamma allows for dependence within clusters, such as in longitudinal data, although its use is not limited to just panel data. GEE models make no distributional assumptions but require three specifications: a mean function, a variance function, and a “working” correlation matrix for the clusters, which models the dependence of each observation with other observations in the same cluster. The “working” correlation matrix is a \(T \times T\) matrix of correlations, where \(T\) is the size of the largest cluster and the elements of the matrix are correlations between within-cluster observations. The appeal of GEE models is that it gives consistent estimates of the parameters and consistent estimates of the standard errors can be obtained using a robust “sandwich” estimator even if the “working” correlation matrix is incorrectly specified. If the “working” correlation matrix is correctly specified, GEE models will give more efficient estimates of the parameters. GEE models measure population-averaged effects as opposed to cluster-specific effects.
z.out <- zelig(Y ~ X1 + X2, model = "gamma.gee",
id = "X3", weights = w, data = mydata)
x.out <- setx(z.out)
s.out <- sim(z.out, x = x.out)
where id
is a variable which identifies the clusters. The data should be sorted by id
and should be ordered within each cluster when appropriate.
Use the following arguments to specify the structure of the “working” correlations within clusters:
corstr
: character string specifying the correlation structure: “independence”, “exchangeable”, “ar1”, “unstructured” and “userdefined”
See geeglm
in package geepack
for other function arguments.
Attaching the sample turnout dataset:
data(coalition)
Sorted variable identifying clusters
coalition$cluster <- c(rep(c(1:62), 5),rep(c(63), 4))
sorted.coalition <- coalition[order(coalition$cluster),]
Estimating model and presenting summary:
z.out <- zelig(duration ~ fract + numst2, model = "gamma.gee",
id = "cluster", data = sorted.coalition,
corstr = "exchangeable")
## How to cite this model in Zelig:
## Patrick Lam. 2011.
## gamma-gee: General Estimating Equation for Gamma Regression
## in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
## "Zelig: Everyone's Statistical Software," http://zeligproject.org/
summary(z.out)
## Model:
##
## Call:
## z5$zelig(formula = duration ~ fract + numst2, id = "cluster",
## corstr = "exchangeable", data = sorted.coalition)
##
## Coefficients:
## Estimate Std.err Wald Pr(>|W|)
## (Intercept) -1.296e-02 1.268e-02 1.045 0.3067
## fract 1.149e-04 1.474e-05 60.761 6.44e-15
## numst2 -1.740e-02 6.294e-03 7.643 0.0057
##
## Estimated Scale Parameters:
## Estimate Std.err
## (Intercept) 0.6231 0.04483
##
## Correlation: Structure = exchangeable Link = identity
##
## Estimated Correlation Parameters:
## Estimate Std.err
## alpha -0.008086 0.03363
## Number of clusters: 63 Maximum cluster size: 5
## Next step: Use 'setx' method
Setting the explanatory variables at their default values (mode for factor variables and mean for non-factor variables), with numst2 set to the vector 0 = no crisis, 1 = crisis.
Simulate quantities of interest
s.out <- sim(z.out, x = x.low, x1 = x.high)
summary(s.out)
##
## sim x :
## -----
## ev
## mean sd 50% 2.5% 97.5%
## [1,] 14.41 1.122 14.37 12.42 16.8
## pv
## mean sd 50% 2.5% 97.5%
## [1,] 14.56 17.89 8.322 0.068 65.74
##
## sim x1 :
## -----
## ev
## mean sd 50% 2.5% 97.5%
## [1,] 19.2 1.067 19.16 17.22 21.39
## pv
## mean sd 50% 2.5% 97.5%
## [1,] 19.55 25.76 10.18 0.1106 92.71
## fd
## mean sd 50% 2.5% 97.5%
## [1,] 4.793 1.564 4.858 1.619 7.811
Generate a plot of quantities of interest:
plot(s.out)
Suppose we have a panel dataset, with \(Y_{it}\) denoting the positive-valued, continuous dependent variable for unit \(i\) at time \(t\). \(Y_{i}\) is a vector or cluster of correlated data where \(y_{it}\) is correlated with \(y_{it^\prime}\) for some or all \(t, t^\prime\). Note that the model assumes correlations within \(i\) but independence across \(i\).
\[ \begin{aligned} Y_{i} &\sim& f(y_{i} \mid \lambda_{i})\\ Y_{it} &\sim& g(y_{it} \mid \lambda_{it})\end{aligned} \] where \(f\) and \(g\) are unspecified distributions with means \(\lambda_{i}\) and \(\lambda_{it}\). GEE models make no distributional assumptions and only require three specifications: a mean function, a variance function, and a correlation structure.
\[ \lambda_{it} = \frac{1}{x_{it} \beta} \]
where \(x_{it}\) is the vector of \(k\) explanatory variables for unit \(i\) at time \(t\) and \(\beta\) is the vector of coefficients.
\[ V_{it} = \lambda_{it}^2 = \frac{1}{(x_{it} \beta)^2} \]
\[ V_{i} = \phi \, A_{i}^{\frac{1}{2}} R_{i}(\alpha) A_{i}^{\frac{1}{2}} \]
where \(A_{i}\) is a \(T \times T\) diagonal matrix with the variance function \(V_{it} = \lambda_{it}^2\) as the \(t\) th diagonal element, \(R_{i}(\alpha)\) is the “working” correlation matrix, and \(\phi\) is a scale parameter. The parameters are then estimated via a quasi-likelihood approach.
All quantities of interest are for marginal means rather than joint means.
The method of bootstrapping generally should not be used in GEE models. If you must bootstrap, bootstrapping should be done within clusters, which is not currently supported in Zelig. For conditional prediction models, data should be matched within clusters.
The expected values (qi$ev) for the GEE gamma model is the mean:
\[ E(Y) = \lambda_{c} = \frac{1}{x_c \beta}, \]
given draws of \(\beta\) from its sampling distribution, where \(x_{c}\) is a vector of values, one for each independent variable, chosen by the user.
\[ \textrm{FD} = \Pr(Y = 1 \mid x_1) - \Pr(Y = 1 \mid x). \]
\[ \frac{1}{\sum_{i=1}^n \sum_{t=1}^T tr_{it}}\sum_{i:tr_{it}=1}^n \sum_{t:tr_{it}=1}^T \left\{ Y_{it}(tr_{it}=1) - E[Y_{it}(tr_{it}=0)] \right\}, \]
where \(tr_{it}\) is a binary explanatory variable defining the treatment (\(tr_{it}=1\)) and control (\(tr_{it}=0\)) groups. Variation in the simulations are due to uncertainty in simulating \(E[Y_{it}(tr_{it}=0)]\), the counterfactual expected value of \(Y_{it}\) for observations in the treatment group, under the assumption that everything stays the same except that the treatment indicator is switched to \(tr_{it}=0\).
The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "gamma.gee", id, data)
then you may see a default summary of information through summary(z.out)
. Other elements available through the $ operator are listed below.
From the zelig() output object z.out, you may extract:
coefficients: parameter estimates for the explanatory variables.
residuals: the working residuals in the final iteration of the fit.
fitted.values: the vector of fitted values for the systemic component.
linear.predictors: the vector of \(x_{it}\beta\)
max.id: the size of the largest cluster.
From summary(z.out), you may extract:
coefficients: the parameter estimates with their associated standard errors, \(p\)-values, and \(z\)-statistics.
working.correlation: the “working” correlation matrix
From the sim() output object s.out, you may extract quantities of interest arranged as matrices indexed by simulation \(\times\) x-observation (for more than one x-observation). Available quantities are:
qi$fd: the simulated first difference in the expected probabilities for the values specified in x and x1.
qi$att.ev: the simulated average expected treatment effect for the treated from conditional prediction models.
The geeglm function is part of the geepack package by Søren Højsgaard, Ulrich Halekoh and Jun Yan. Advanced users may wish to refer to help(geepack)
and help(family)
.
Højsgaard S, Halekoh U and Yan J (2006). “The R Package geepack for Generalized Estimating Equations.” Journal of Statistical Software, 15/2, pp. 1-11.
Yan J and Fine JP (2004). “Estimating Equations for Association Structures.” Statistics in Medicine, 23, pp. 859-880.
Yan J (2002). “geepack: Yet Another Package for Generalized Estimating Equations.” R-News, 2/3, pp. 12-14.